JEEP 2023

October 4-6, 2023

A rare case of Polymorphism in the Binary System of Enantiomers of a Praziquantel derivative: Crystal Structures and Phase Diagram Determinations.

<u>Clément Pinètre</u>¹*, Clément Brandel¹, Loïc Ritou¹, Charline J.J. Gérard¹, Hugo Cercel¹, Michel Leeman², Richard M. Kellogg², Paul Tinnemans³, René de Gelder³, Valérie Dupray¹, Joop H. ter Horst¹.

¹Univ Rouen Normandie, SMS, UR 3233, F-76000 Rouen, France ²Symeres, Kadijk 3, 9747 AT Groningen, The Netherlands ³Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen (The Netherlands) *<u>clement.pinetre1@univ-rouen.fr</u>

Keywords: Polymorphism, Racemic compound, Crystal Structure, Praziquantel, Phase diagram.

Praziguantel is an important chiral anthelmintic drug used to treat schistosomiasis.[1] It crystallizes as a stable racemic compound and is marketed as racemic mixture but the biological activity is mainly due to the (R)-enantiomer. It is possible to prepare enantiopure Praziquantel by classical resolution of its precursor Praziquanamine using Dibenzoyl Tartaric Acid as a resolving agent.[2] More recently, a study reported the chiral resolution of a PZQ derivative crystallizing as a conglomerate by Viedma ripening, illustrating the benefit of simple molecular derivation for enantiomeric resolution.[3] In a conglomerate screening context, we prepared numerous derivatives of PZQ, mainly by modification of the moiety the amide function. In this study. that linked to we discovered 2-(cyclopropanecarbonyl)dodecahydro-4H-pyrazino[2,1-a]isoquinolin-4-one (PZO CvP hereafter), *i.e.* a PZQ derivative in which the six-membered ring has been substituted by a three-membered ring, exhibits a very rare crystallization behavior with no less than three enantiotropic polymorphs of the racemic compound: low (LT), medium (MT) and high (HT) temperature polymorphs. Although chiral resolution is not possible for this system, we report a unique polymorphic situation between the two enantiomers. The results are in particular supported by the experimental construction of the binary phase diagram between PZQ_CyP enantiomers and the crystal structures of the different polymorphs are presented.

Figure 1. a) Molecular structure of PZQ_CyP and b) Melting phase diagram of PZQ_CyP. Blue, red and green circles stand for experimental data obtained using LT, MT and HT polymorphs respectively. I: $\langle R \rangle + \langle R S \rangle_{LT}$; II: $\langle S \rangle + \langle R S \rangle_{LT}$; III: $\langle R \rangle + \langle R S \rangle_{MT}$; IV: $\langle S \rangle + \langle R S \rangle_{MT}$; V: $\langle R S \rangle_{MT}$ + Liquide; VI: $\langle R S \rangle_{HT}$ + Liquide; VII: $\langle R \rangle$ + Liquide; VII: $\langle S \rangle$ + Liquide; IX: Liquide Bolded lines and dashed lines are respectively for stable and metastable equilibria (guides for the eyes).

[1] Dömling, A.; Khoury, K. (2010): Praziquantel and Schistosomiasis. ChemMedChem 2010, 5 (9), 1420–1434.

[2] Woelfle, M.; Seerden, J.-P.; de Gooijer, J.; Pouwer, K.; Olliaro, P.; Todd, M. (2011): H. Resolution of Praziquantel. *PLoS Negl Trop Dis.* 5 (9), e1260.

[3] Valenti, G.; Tinnemans, P.; Baglai, I.; Noorduin, W. L.; Kaptein, B.; Leeman, M.; ter Horst, J. H.; Kellogg, R. M. (2021): Combining Incompatible Processes for Deracemization of a Praziquantel Derivative under Flow Conditions. *Angew. Chem. 133* (10), 5339–5342.

JEEP 2023

October 4-6, 2023

Preferred type of contribution:

Poster

🔀 Oral

NB : The final decision belongs to the Scientific Committee